
A Review of Constraint-Based Routing Algorithms

F.A. Kuipers∗, T. Korkmaz, M. Krunz and P. Van Mieghem

June 14, 2002

Abstract

Constraint-based routing is an invaluable part of a full-ßedged Quality of Service (QoS) archi-
tecture. Unfortunately, routing with multiple additive constraints is known to be a NP-complete
problem. Hence, accurate constraint-based routing algorithms with a fast running time are scarce,
perhaps even non-existent. The expected impact of such a constrained-based routing algorithm
has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. Although at
times an overview of QoS algorithms has been published, a comparative study to the performance
of QoS algorithms is still missing. With this paper we attempt to Þll this gap.
This paper aims to give a thorough, concise and fair evaluation of the most important constraint-

based routing algorithms known today. We will provide a descriptive overview of restricted shortest
path algorithms and multi-constrained path algorithms. A performance evaluation of these two
classes of algorithms is presented based on complexity analysis and simulation results.

1 Introduction

The continuous demand for using multimedia applications over the Internet has triggered a spur

of research on how to satisfy the Quality of Service (QoS) requirements of these applications, e.g.

requirements regarding bandwidth, delay, jitter, and reliability. These efforts resulted in the proposals

of several QoS-based frameworks, such as the Integrated Services (IntServ) [14], Differentiated Services

(DiffServ) [12] and Multi-Protocol Label Switching (MPLS) [7], [71]. One of the key issues in providing

QoS guarantees is how to determine paths that satisfy QoS constraints. Solving this problem is known

as QoS routing or constraint-based routing. All the above mentioned QoS-based frameworks will

beneÞt and therefore should deploy QoS routing, as described later.

The research community has extensively studied the QoS routing problem, resulting in many QoS

routing algorithms. In 1998, Chen and Nahrstedt [18] provided an overview of the majority of QoS

routing algorithms known at that time, however without comparing them. In the mean time, many

other QoS routing algorithms have emerged, but still no comparative study has been performed. In

this paper, we aim at Þlling this gap for unicast1 QoS routing algorithms, which try to Þnd a path

between a source node and a destination node that satisÞes a set of constraints.

Routing in general involves two identities [39], namely the routing protocol and the routing algo-

rithm. The routing protocol has the task of capturing the state of the network and its available network
∗Corresponding author, F.A.Kuipers@its.tudelft.nl
1Multicast QoS routing faces different conceptual problems as discussed in [53]. An overview of several multicast QoS

algorithms has been given in [72] and more recently in [81].

1

resources and distributing this information throughout the network. The routing algorithm uses this

information to compute shortest paths. Current best-effort routing performs these tasks based on a

single measure like hopcount or delay. QoS routing however, must take into account multiple QoS

requirements, link dynamics, as well as the implication of the selected routes on network utilization,

turning QoS routing into a notoriously challenging problem. Despite its difficulty, we argue that

QoS routing is invaluable in a network architecture that needs to satisfy traffic and service require-

ments ([23, 85, 61, 34]). For example, in the context of ATM (PNNI), QoS routing is performed by

source nodes to determine suitable paths for connection requests. These connection requests specify

QoS constraints that the path must obey. Since ATM is a connection-oriented technology, a path

selected by PNNI will remain in use for a potentially long period of time. It is therefore important to

choose a path with care. The IntServ/RSVP framework is also able to guarantee some speciÞc QoS

constraints. However, this framework relies on the underlying IP routing table to reserve its resources.

As long as this routing table is not QoS-aware, paths may be assigned that cannot guarantee the

constraints, which will result in blocking. In MPLS, which is a convergence of several efforts aimed at

combining the best features of IP and ATM [19], a source node selects a path, possibly subject to QoS

constraints, and uses a signaling protocol (e.g., RSVP or CR-LDP) to reserve resources along that

path. In the case of DiffServ, QoS-based routes can be requested, for example, by network adminis-

trators for traffic engineering purposes. Such routes can be used to guarantee a certain service level

agreement (SLA)[85]. These examples all indicate the importance of constraint-based routing algo-

rithms, both in ATM and IP. Depending on the frequency at which constrained paths are requested,

the computational complexity of Þnding a path subject to multiple constraints is often a complicating

but decisive factor.

To enable QoS routing, it is necessary to implement state-dependent, QoS-aware networking pro-

tocols. Examples of such protocols are PNNI [6] of the ATM Forum and the QoS-enhanced OSPF

protocol [5]. For the Þrst task in routing (i.e., the representation and dissemination of network-state

information), both OSPF and PNNI use link-state routing, in which every node tries to acquire a

�map� of the underlying network topology and its available resources via ßooding [11]. Despite its

simplicity and reliability, ßooding involves unnecessary communications and causes inefficient use of

resources, particularly in the context of QoS routing that requires frequent distribution of multiple,

dynamic parameters, e.g., using triggered updates [4]. Creating efficient QoS routing protocols is

still an open issue that needs to be investigated further [55, 15]. Hereafter, we assume that the

network-state information is temporarily static and has been distributed throughout the network and

is accurately maintained at each node using QoS link-state routing protocols. Once a node acquires

the network-state information, it performs the second task in QoS routing, namely computing paths

based on multiple QoS constraints. In this paper, we mainly focus on this so-called multi-constrained

path selection problem and consider numerous proposed algorithms. Before giving the formal deÞni-

tion of the multi-constrained path problem, let us describe the notation that is used throughout this

paper.

Let G(N,E) denote a network topology, where N is the set of nodes and E is the set of links.

With a slight abuse of notation, we also use N and E to denote the number of nodes and the number

of links, respectively. The number of QoS measures (e.g. delay, hopcount, ...) is denoted by m.

Each link is characterized by a m-dimensional link weight vector, consisting of m non-negative QoS

2

weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E) as components. The QoS measure of a path can either be
additive (e.g., delay, jitter, the logarithm of packet loss), in which case the weight of that measure

equals the sum of the QoS weights of the links deÞning that path. Or the weight of a QoS measure of

a path can be the minimum(maximum) of the QoS weights along the path (e.g., available bandwidth

and policy ßags). Constraints on min(max) QoS measures can easily be treated by omitting all links

(and possibly disconnected nodes) which do not satisfy the requested min(max) QoS constraints. We

call this topology Þltering. In contrast, constraints on additive QoS measures cause more difficulties.

Hence, without loss of generality, we assume all QoS measures to be additive.

The basic problem considered in this paper can be deÞned as follows:

DeÞnition 1 Multi-Constrained Path (MCP) problem: Consider a network G(N,E). Each link

(u, v) ∈ E is speciÞed by a link weight vector with as componentsm additive QoS weights wi(u, v) ≥ 0,
i = 1, ...,m. Given m constraints Li, i = 1, ...,m, the problem is to Þnd a path P from a source node

s to a destination node d such that:

wi(P)
def
=

P
(u,v)∈P

wi(u, v) ≤ Li for i = 1, ...,m

A path that satisÞes all m constraints is often referred to as a feasible path. There may be multiple

different paths in the graph G(N,E) that satisfy the constraints. According to deÞnition 1, any of
these paths is a solution to the MCP problem. However, it might be desirable to retrieve the path

with smallest length l(P) from the set of feasible paths. This problem is called the multi-constrained

optimal path problem and is formally deÞned as follows:

DeÞnition 2 Multi-Constrained Optimal Path (MCOP) problem: Consider a network G(N,E). Each
link (u, v) ∈ E is speciÞed by a link weight vector with as components m additive QoS weights

wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li, i = 1, ...,m, the problem is to Þnd a path P from

a source node s to a destination node d such that:

(i) wi(P)
def
=

P
(u,v)∈P

wi(u, v) ≤ Li for i = 1, ...,m
(ii) l(P) ≤ l(P ∗), ∀P ∗, P satisfying (i)

l(P) can be any function of the weights wi(P), i = 1, ...,m, provided it obeys the criteria for

�length� or �distance� in vector algebra (see [79], Appendix A). Minimizing a properly chosen length

function, can result in an efficient use of the network resources and/or result in a reduction of monetary

cost.

In general, MCP, irrespective of path optimization, is known to be a NP-complete problem [29].

Under the umbrella of the MCP problem, another NP-complete problem has received most attention,

namely the restricted shortest path problem:

DeÞnition 3 Restricted Shortest Path (RSP) problem: Consider a network G(N,E). Each link

(u, v) ∈ E is speciÞed by two nonnegative measures: a cost c(u, v) and a delay d(u, v). Given a delay
constraint ∆, the RSP problem consists of Þnding a path P ∗ from a source node s to a destination

node d such that d(P ∗) ≤ ∆ and c(P ∗) ≤ c(P) ∀P : d(P) ≤ ∆, where c(P) def
=
P
(u,v)∈P c(u, v) and

d(P)
def
=
P
(u,v)∈P d(u, v).

3

Because the problems deÞned in deÞnitions 1-3 are NP-complete [1, 29], they are considered to be
intractable for large networks. Accordingly, mostly heuristics have been proposed for these problems.

In this paper, we brießy describe the lion�s share of the published QoS algorithms and compare

them based on extensive simulations. Complexity will be an important criterion for evaluating the

algorithms. Complexity refers to the intrinsic minimum amount of resources needed to solve a problem

or execute an algorithm. Complexity can be divided into time complexity and space complexity. In

this paper we will only look at on the computational time-complexity. Throughout this paper, we

consider both the worst-case complexity and the execution time. There can be a signiÞcant difference

between these measures, as shown by Kuipers and Van Mieghem in [52]. They show that, under

certain conditions and on average, the MCP problem can be solved in polynomial time despite its

worst-case NP-complete complexity. Moreover, there exist speciÞc classes of graphs, for which the

MCP problem is not NP-complete at all, e.g. if each node has only two neighbors.

The remainder of this paper is divided into two parts, which can be read independently. In Section

2, we consider the RSP problem, give a survey of the algorithms that target this problem, evaluate

their performance using simulations, and provide a conclusion. Section 3 adopts the same approach

for the MCP problem. For completeness Section 4 touches upon QoS algorithms that were designed

to operate in speciÞc cases. Section 5 provides the summary and discussion.

2 RSP Algorithms

In this section, we consider the Restricted Shortest Path (RSP) problem. In the literature, the RSP

problem is also studied under different names such as delay-constrained least-cost (DCLC) path,

minimum-cost restricted-time (MCRT) path, or constrained shortest path (CSP). Garey and Johnson

[29] and Ahuja et al. [1] have shown that the RSP problem is a NP-complete problem. To cope with

this NP-completeness, researchers have mainly resorted to heuristics and approximation algorithms.

We will Þrst describe and classify the RSP algorithms according to their fundamental properties in

Section 2.1. We then compare these algorithms in Section 2.2. Finally, we provide a brief conclusion

in Section 2.3.

2.1 Overview of RSP Algorithms

In this subsection, we classify the RSP algorithms and brießy describe them.

2.1.1 Exact Algorithms

The exact solution to the RSP problem can be found by systematically examining every path in a

brute-force manner. However, since the number of paths grows exponentially, this method requires

an exponential number of operations in the worst case. Hence, it may not be useful in practice. To

provide a practical exact solution to the RSP problem, Widyono [84] proposed an algorithm called

Constrained Bellman-Ford (CBF). This algorithm, Þnds independent minimum cost paths between

a source and a set of destination nodes2 of which each has its own delay constraint. The basic idea

behind this algorithm is to systematically discover the lowest-cost paths while monotonically increasing

2Here we only consider the single destination case.

4

delay. CBF maintains a list of paths from the source node to each other node with increasing cost

and decreasing delay. The algorithm selects a node whose list contains a path that satisÞes the delay

constraint and that has the minimum cost. CBF then explores the neighbors of this node using a

breadth-Þrst search [22], and (if necessary) adds new paths to the list maintained at each neighbor.

This process continues as long as the delay constraint is satisÞed and there exists a path to explore

further. Although CBF exactly solves the RSP problem, its execution time grows exponentially in the

worst case. We have implemented this algorithm as a reference point for exact algorithms and have

measured its execution time through simulations.

The RSP problem can also be solved exact via pseudo-polynomial-time algorithms. An example

of an such algorithm is shown in Figure 1. It is assumed that d(u, v) and ∆ have a Þnite granularity

and are represented by non-negative integers, i.e. they are expressed as an integer number of a basic

unit. The idea here is to iteratively compute the minimum cost paths whose delays are equal to r,

Pseudo-polynomial-RSP(G(N,E), s, t,∆)
1 Cv[i] =∞ ∀v and for i = 0, 1, 2, . . . ,∆
2 Cs[i] = 0 for i = 0, 1, 2, . . . ,∆

3 Pv[i] = NIL ∀v and for i = 0, 1, 2, . . . ,∆
4 for r = 0 to r ≤ ∆ do

5 for each (u, v) ∈ E do
6 if r + d(u, v) ≤ ∆ and Cu[r] + c(u, v) < Cv[r + d(u, v)] then
7 Cv[r + d(u, v)] = Cu[r] + c(u, v)
8 Pv[r + d(u, v)] = u
9 end if
10 end for
11 end for
12 The cost of the optimal path is min{Ct[i] | i = 0, 1, 2, . . . ,∆}

Figure 1: Pseudo-polynomial-time algorithm for the RSP problem.

where r = 0, 1, 2, . . . ,∆. A cost vector Cv[r] is associated with each node v and stores the minimum

cost from s to v that has a total delay of r. The vector of Pv[k] represents the previous node of

v on the minimum cost path. The complexity of this algorithm is O(∆E) since two nested loops

in lines 4 and 5 are executed for r = 0, 1, 2, . . . ,∆ and for each link (u, v) ∈ E. In general, the

complexity of pseudo-polynomial-time algorithms depends on the actual values of the input data (e.g.,

the given delay constraint) in addition to the size of the network. Pseudo-polynomial-time algorithms

can require a large execution time if the value of the input data is large. This can happen if the

granularity is very small.

2.1.2 ²-Optimal Approximation Algorithms

One general approach in dealing with NP-complete problems is to look for an approximation algorithm

(i.e. heuristic) with a polynomial complexity that guarantees to Þnd a quantiÞable close solution to

5

the optimal one [45]. If an algorithm is ²-optimal, it returns a path with a length at most (1+²) times

the length of the optimal path, where ² > 0. For the RSP problem, Hassin [37] provided two ²-optimal

approximation algorithms with the complexities of O((EN² + 1) log logB) and O(EN
2

² log(N²)), where

B is an upper bound on the cost of a path. It is assumed that the link weights are positive integers.

The Þrst ²-optimal approximation algorithm initially determines an upper bound (UB) and a

lower bound (LB) on the optimal cost denoted by OPT . For this, the algorithm initially starts with

LB = 1 and UB = sum of (N-1) largest link-costs, and then systematically adjusts them using a

testing procedure. Once these bounds are found, the approximation algorithm bounds the cost of

each link by rounding and scaling it according to: c0(u, v) =
j
c(u,v)(N−1)

²LB

k
∀ (u, v) ∈ E. Finally,

it applies a pseudo-polynomial-time algorithm on these modiÞed weights that is similar to the one

presented in Figure 1.

The second approximation algorithm uses a slightly different technique called interval partitioning,

in which a set of positive numbers Q = {p1, p2, . . . , pm} is partitioned into subsets R1, . . . , Rr+1 such
that pi ∈ Rj if and only if X(j−1)r < pi ≤ Xj

r for j = 1, . . . , r, and pi ∈ Rr+1 if and only if pi > X,
where X is a given positive number. Phillips [68] provided another ²-optimal approximation using a

Dijkstra-based algorithm with the complexity of O(EN(1 + 1
²) +N

2(1 + 1
²)(logN + log(1 +

1
²))).

Approximation algorithms perform better in minimizing the cost of a returned feasible path as ²

goes to zero. However, a smaller value for ² leads to an increased complexity. Orda [64] and Lorenz et

al. [57] modiÞed ²-optimal approximation algorithms to scale better in hierarchical networks. Ergun et

al. [27] proposed an ²-optimal approximation algorithm for a RSP-related problem, in which one link

weight is a function of the other. Goel et al. [30] considered a related problem, in which the least-cost

path from a given source to all destinations is searched while satisfying the delay constraint ∆ for

each path. For this problem, Goel et al. provided an ²-approximation algorithm with the complexity

of O((E +N logN)D²), where D can be at most N − 1.

2.1.3 Backward-Forward Heuristic Algorithms

Reeves and Salama [70] proposed a distributed heuristic for the RSP problem, called the delay-

constrained unicast routing (DCUR) algorithm. The complexity of this algorithm is O(N2). The

algorithm explores the graph based on the concatenation of two segments: (1) the so-far explored

path from the source s to an intermediate node u; and (2) the least-delay or the least-cost path from

the node u to the destination d. Sun and Langendorfer [76] considered the same DCUR algorithm

and improved the original DCUR by reducing the complexity to O(N). Ishida et al. [41] considered a

similar algorithm to DCUR and discussed its use in multipath routing. Sriram et al. [73] used similar

ideas to provide a distributed algorithm based on probing and backtracking. This algorithm sends a

probe packet over the preferred links one at a time. If it is accepted, the probe packet is forwarded

to the next node. Otherwise, it is rejected and the algorithm tries the next preferred link. The least

delay and least cost paths from every node u to destination d are used as in the previous algorithms.

While there are some differences in the distributed versions of the four above mentioned algorithms,

the main property behind these algorithms leads to a centralized heuristic that involves searching the

underlying graph in backward and forward directions. Since we have implemented other algorithms in a

centralized manner, we have implemented the backward-forward heuristic (BFH) as follows: BFH Þrst

6

determines the least-delay path (LDP) and the least-cost path (LCP) from every node u to destination

d. This can be done by executing Reverse-Dijkstra [1] w.r.t. d(u, v) and c(u, v). BFH then starts from

the source node s and explores the graph as in Dijkstra�s algorithm with the following modiÞcation

in the relaxation procedure: link (u, v) is relaxed if d[u] + d(u, v) + d[LDP from v to d] ≤ ∆ and

c(u) + c(u, v) < c(v). BFH extracts nodes that have minimum cost. The computational complexity

of BFH equals two times Reverse-Dijkstra plus one modiÞed Dijkstra execution, summing up to tree

times the complexity of Dijkstra�s algorithm.

2.1.4 Lagrangian-based Linear Composition Algorithms

The Lagrangian-based linear composition algorithm linearly combines the delay and cost of each link

and Þnds the shortest path w.r.t. this single measure. The weight of a link thus becomes w(u, v) =

αd(u, v) + βc(u, v), where α,β are the multipliers. With this approach there is no guarantee that

the returned path is within the delay constraint and minimizes the cost. A key issue here is how

to determine the appropriate multipliers when combining the delay and cost. Aneja and Nair [3]

proposed a systematic way of searching the appropriate multipliers to combine delay and cost as

follows: the algorithm iteratively Þnds the shortest path w.r.t. a linear combination of delay and cost.

At each iteration, it adjusts the multipliers of delay and cost in the linear combination to approach

the optimal path. Aneja and Nair demonstrated the similarity of this method to the generalized

Lagrangian technique (see also Kuhn-Tucker conditions [51]). They also showed that the search takes

Þnite iterations of Dijkstra�s algorithm assuming that the weights of the paths are uniformly distributed

in the delay-cost space.

Several researchers [36], [13], [44] have considered the Lagrangian-based search and independently

reached the above mentioned approach along with some extensions. For example, Handler and Zang

[36] considered a k-shortest path algorithm [26] to close the gap between the optimal solution and

the returned path based on the linear combination. Although the computational results indicate an

order of magnitude savings, the amount of time to determine an optimal path may be excessive in

some cases. Juttner et al. [44] showed that the worst-case complexity of our implemented algorithm

is O(E2 log2(E)).

2.1.5 Hybrid Algorithms

Guo and Matta [35] select the cost of the least-delay path as the cost constraint. Then they try to solve

the RSP problem through the minimization of a nonlinear length function, analogue to TAMCRA (see

Section 3.1.3), that gives more priority to lower cost paths. To minimize the nonlinear length function,

they propose an algorithm called DCCR that uses a k-shortest path algorithm. The performance of

the DCCR algorithm depends on k. If k is large, the algorithm gives good performance at the expense

of an increased execution-time. In order to improve the performance with small values of k, Guo

and Matta tried to reduce the search space and tighten the cost bound by using a Lagrangian-based

algorithm before applying DCCR. This Þnal hybrid algorithm is called SSR+DCCR. The complexity

of this Þnal algorithm depends on that of the Lagrangian-based algorithm and the k-shortest path

algorithm. In our implementation, we used the above presented Lagrangian-based algorithm and the

k-shortest paths algorithm in [20], leading to a total complexity of O(xE logN + kE log(kN) + k2E).

7

2.2 Performance Comparison of RSP Algorithms

In this subsection, we compare the RSP algorithms through simulations, for which we use Waxman

graphs [83], [80]. Waxman graphs are often chosen in simulations as topologies resembling communi-

cation networks. Moreover, these graphs are easy to generate, allowing us to evaluate a large number

of topologies. This last property is crucial in an extensive algorithmic study, where it is necessary to

evaluate many scenarios in order to be able to draw signiÞcant conclusions. In each simulation with

50, 100 and 200 nodes, we generated 104 Waxman graphs and selected node 1 and node N as the

source and destination node, respectively. In each graph, the delay and the cost of every link (u, v)

are independent uniformly distributed random variables.

We select the delay constraint ∆ as follows: we compute the least-delay path (LDP) and the

least-cost path (LCP) between the source and the destination using Dijkstra�s algorithm. If the delay

constraint ∆ < d(LDP), then there is no feasible path. If d(LCP) ≤ ∆, then the LCP is the optimal
path. Since these two cases are easy to deal with, we want to compare the algorithms under the

more difficult cases where d(LDP) < ∆ < d(LCP). To investigate how the different values of the

delay constraint affect the performance of the compared algorithms, we select per graph Þve different

monotonically increasing values for ∆ in the range (d(LDP), d(LCP)), as follows:

∆ = d(LDP) +
x

5
(d(LCP)− d(LDP)), x = 1, 2, 3, 4, 5.

All considered RSP algorithms are capable of Þnding a feasible path (if any) that satisÞes the given

delay constraint ∆. With our choice of the delay constraint there is always a feasible path present.

Therefore, the challenging part of the RSP problem is not to Þnd a feasible path, but the ability of

the algorithm to minimize the cost of a selected feasible path. The considered RSP algorithms may

return different feasible paths with different costs. We compare the algorithms based on how efficient

or inefficient they are in minimizing the cost of a returned feasible path, when compared to the exact

algorithm that Þnds a feasible path with the minimum cost. The inefficiency of an algorithm A is

deÞned as

inefficiencyA
def
=
cost(A)− cost(Exact_Algorithm)

cost(Exact_Algorithm)

where cost(·) is the average cost of the feasible paths that are returned by a given algorithm. This
performance measure is also used in other papers, such as [35]. The other performance measure we

use is the complexity. In addition to the worst-case complexity reported in the previous subsection,

we measure the execution time of the compared algorithms. These execution times are normalized by

the execution time of Dijkstra�s algorithm.

Initial simulation results have indicated that the execution times of the ²-optimal approximation

algorithms (even when ² = 1) are much larger than that of the other compared algorithms. Therefore,

we excluded the ²-approximations from our simulations. We compared the following algorithms: the

exact CBF, the least delay path (LDP), Lagrangian-based Linear Composition (LLC), Backward-

forward heuristic (BFH), DCCR, and SSR+DCCR. The behavior of these algorithms for different

delay constraints is similar for N = 50, 100, 200. Therefore we have averaged the results for the

Þve delay constraints. We have plotted the inefficiency and the execution time of the algorithms in

Figure 2. In all cases, the basic LDP algorithm had the highest inefficiency and the lowest complexity.

8

50 100 150 20010-5

10-4

10-3

10-2

10-1

100

101

Number of nodes

in
ef

fic
ie

nc
y

Least Delay Path (LDP)
Lagrangian-based Linear Composition (LLC)
Backward-Forward Heuristic (BFH)
DCCR k=2
DCCR k=5
SSR+DCCR k=5

50 100 150 200100

101

102

Number of nodes

C
PU

 ti
m

e
(n

or
m

al
iz

ed
 b

y
D

ijk
st

ra
)

Least Delay Path (LDP)
Lagrangian-based Linear Composition (LLC)
Backward-Forward Heuristic (BFH)
DCCR k=2
DCCR k=5
SSR+DCCR k=5
CBF (exact one)

Figure 2: Scaling of the performance measures with N .

With a slight increase in execution time (on average two times that of Dijkstra�s algorithm),

BFH has a signiÞcantly lower inefficiency than the LDP algorithm. Actually, BFH also has a lower

inefficiency (even in less computational time) than LLC and DCCR with k = 2. Since the inefficiency

of DCCR and SSR+DCCR is controlled by the value of k, they can give a lower inefficiency than the

other algorithms as k increases, at the expense of a longer execution time.

The complexity of the exact CBF algorithm is linearly increasing with the value of ∆ while the

complexity of other algorithms does not signiÞcantly change with ∆, suggesting that CBF can be

used when ∆ is small. The inefficiency of all algorithms except for SSR+DCCR increases as ∆

increases. The reason is that as ∆ increases, more paths with small cost become feasible and the

search space becomes larger. However, since the other algorithms do not reduce their search space

as SSR+DCCR does, their chance of Þnding an optimal path is often decreased as ∆ increases.

SSR+DCCR circumvents this situation by reducing its search space, and achieves a lower inefficiency

than the other simulated algorithms.

2.3 RSP Conclusions

Our conclusions for the restricted shortest path problem are valid for the considered class of Waxman

graphs, with independent uniformly distributed link weights. According to [80], the conclusions will

also be valid for the class of random graphs, with the same link weight distribution.

In general, the simulations indicated that a higher efficiency is only obtained at the expense of

increased execution time. Therefore, a hybrid algorithm similar to SSR+DCCR seems to be a good

solution for the RSP problem. Such an algorithm should start with BFH instead of LLC and (if

needed) continue to use a k-shortest path algorithm with a nonlinear length function, as in DCCR.

The main advantage of a hybrid algorithm would be to initially determine a good path with a small

execution time and to improve the efficiency while controlling the complexity with the value of k.

Summarizing, the concepts that render the best RSP algorithm among the set of evaluated RSP

algorithms, are: a nonlinear length function, search space reduction, tunable accuracy through a k-

shortest path algorithm and a look-ahead (predictive) property. These concepts will also lead to a

9

better performance for the MCP problem in the following section.

3 MCP Algorithms

In this section we focus on the MCP algorithms, including some MCOP algorithms. The MCP and

MCOP problems are deÞned in deÞnitions 1 and 2, respectively.
In Section 3.1 we brießy describe the MCP algorithms. Subsequently we compare these algorithms

via simulations in Section 3.2. Finally, we provide a brief conclusion in Section 3.3.

3.1 Overview of MCP Algorithms

3.1.1 Jaffe�s Approximate Algorithm

Jaffe [43] presented two algorithms to deal with the MCP problem under two constraints. The Þrst

method is an exact pseudo-polynomial-time algorithm that has an unattractive worst-case complexity

of O(N5b logNb), where b is the largest weight in the graph. Because of this prohibitive complexity,

we will only discuss Jaffe�s second algorithm, which we will further refer to as Jaffe�s algorithm. Jaffe

proposed to use a shortest path algorithm on a linear combination of the two link weights:

w(u, v) = d1 ·w1(u, v) + d2 · w2(u, v) (1)

where d1 and d2 are positive multipliers. Figure 3 visualizes how the shortest path w.r.t. the linear

combination of two link weights is determined.

1/d1

1/d2

l1(P)

l2(P)

L2

L1

Figure 3: Distribution of the paths. Jaffe�s scanning procedure Þrst encounters the encircled node,

which accordingly represents the path with minimal length.

Each line in Figure 3 shows equilength paths w.r.t. the linear length deÞnition (1). Jaffe�s search

is visualized by a line starting in the origin and moving outward according to the values of the

multipliers. As soon as this line hits a path (i.e., encircled black dot), the algorithm returns this path

as the shortest one w.r.t. the linear length deÞnition (1). Figure 3 also illustrates that the shortest

path based on a linear combination of link weights does not necessarily reside within the constraints.

10

Jaffe had also noticed this and therefore provided the following nonlinear deÞnition for the path length

f(P) = max{w1(P), L1}+max{w2(P), L2}, whose minimization can guarantee to Þnd a feasible path
if such a path exists. However, because no simple shortest path algorithm can cope with this nonlinear

length function, Jaffe tried to approximate it by using the above mentioned linear length function (1).

Andrew and Kusuma [2] extended Jaffe�s analysis to an arbitrary number of constraints m, extending

the linear length function to

l(P) =
mX
i=1

diwi(P) (2)

and the nonlinear function to

f(P) =
mX
i=1

max (wi(P), Li)

Andrew and Kusuma proved that for all positive values of the multipliers l(P)
f(P) ≤ 2. This performance

bound on l(P)
f(P) can be reduced to 2− 1

m by choosing di = 1

L
1/m
i

. Obviously this works best for small

m. However, under different circumstances, a different choice of the multipliers may render a better

performance. For the simulations we have used di = 1
Li
. Furthermore, we have used Dijkstra�s

algorithm along with Fibonacci heaps, leading to a complexity for Jaffe�s algorithm of O(N logN +

mE).

If the returned path is not feasible, then Jaffe�s algorithm returns this path and stops, but the

search could be continued by using different values for di, which might lead to Þnding a feasible path.

Unfortunately, in some cases, even if all possible combinations of di are exhausted, a feasible path

may not be found using linear search. For exactness, it is therefore necessary to use a nonlinear length

function, even though such a function cannot be minimized through a simple shortest path algorithm.

3.1.2 Iwata�s Algorithm

Iwata et al. [42] proposed a polynomial-time algorithm to solve the MCP problem. The algorithm

Þrst computes one (or more) shortest path(s) based on one QoS measure and then checks if all the

constraints are met. If this is not the case, the procedure is repeated with another measure until a

feasible path is found or all QoS measures are examined. A similar approach has been proposed by

Lee et al. [54]. In the simulations we will evaluate the algorithm of Iwata et al. and refer to it as

Iwata�s algorithm.

The problem with the proposed approach is that there is no guarantee that any of the shortest

paths for each measure individually, is close to a path within the constraints. This is illustrated in

Figure 4, which shows the twenty shortest paths of a two-constraint problem applied to a random

graph with 100 nodes. Here we see that only the 2nd and 3rd shortest path for measure 1 and the

2nd and 4th shortest path for measure 2 lie within the constraints.

Iwata�s (and likewise Jaffe�s) algorithm will perform best if the link weights are positively corre-

lated, because then if one weight is small, the other weights are most likely also relatively small.

In our simulations we will only consider one shortest path per QoS measure computed via Dijkstra�s

algorithm, leading to a complexity of O(mN logN +mE).

11

0

L2

0 L1

pathlength for measure 1
pa

th
le

ng
th

fo
r m

ea
su

re
 2

1 2 43

1
2
3

0

L2

0 L1

pathlength for measure 1
pa

th
le

ng
th

fo
r m

ea
su

re
 2

1 2 43

1
2
3

Figure 4: Twenty shortest paths for a two-constraint problem. Each path is represented as a dot and

the coordinates of each dot are its path-length for each metric individually.

3.1.3 SAMCRA: A Self-Adaptive Multiple Constraints Routing Algorithm

SAMCRA [79] is the exact successor of TAMCRA, a Tunable Accuracy Multiple Constraints Routing

Algorithm [25], [24]. TAMCRA and SAMCRA are based on three fundamental concepts: (1) a

nonlinear measure for the path length, (2) a k-shortest path approach [20] and (3) the principle of

non-dominated paths [38]:

l 1 (P)

l 2 (P)

L 2

L 1 l 1 (P)

l 2 (P)

L 2

L 1

() () l P
L

l P
L c 1

1
2

2
+ = c

L
Pl

L
Pl

qqq

=



















+








1

2

2

1

1)()(

(a) (b)

Figure 5: Scanning procedure with (a) straight equilength lines. (b) curved equilength lines.

1. Figure 5 illustrates that using curved equilength lines (a nonlinear length function) to scan the

constraints area is more efficient than the straight equilength line approach as performed by

Jaffe�s algorithm. The formula in Figure 5b is derived from Holder�s q-vector norm [32]. Ideally,

the equilength lines should perfectly match the boundaries of the constraints, scanning the con-

straint area without ever selecting a solution outside the constraint area, which is only achieved

when q →∞. Motivated by the geometry of the constraints surface in m-dimensional space, the

12

length of a path P is deÞned, equivalent to Holder�s q-vector norm with q →∞, as follows [25]:

l(P) = max
1≤i≤m

µ
wi(P)

Li

¶
(3)

where wi(P) =
P

(u,v)∈P
wi(u, v).

A solution to the MCP problem is a path whose weights are all within the constraints, i.e. l(P)

≤ 1. However, SAMCRA is a MCOP algorithm. Depending on the speciÞcs of a constrained

optimization problem, SAMCRA can be used with different length functions, provided they

obey the criteria for length in vector algebra. Example length functions are given in [79] and

we have implemented such a different length function in SAMCRAcost, which minimizes only

one �monetary cost� measure of the paths within the constraints. By using length function (3)

we treat all QoS measures as equally important. This could result in a more efficient use of the

network resources. An important corollary of a nonlinear path length as (3) is that the subsec-

tions of shortest paths in multiple dimensions are not necessarily shortest paths. This suggests

to consider in the computation more paths than only the shortest one, leading to the k-shortest

path approach.

2. The k-shortest path algorithm as presented in [20] is essentially Dijkstra�s algorithm that does

not stop when the destination is reached, but continues until the destination has been reached by

k different paths, which succeed each other in length. In SAMCRA the k shortest path concept

is applied to the intermediate nodes i on the path from source node s to destination node d, to

keep track of multiple sub-paths from s to i. Not all sub-paths are stored, but a distinction is

made based on non-dominance.

3. The principle of non-dominance is the third concept in SAMCRA. A path Q is dominated by

a path P if wi(P) ≤ wi(Q) for i = 1, ..,m, with an inequality for at least one i. SAMCRA

only considers non-dominated (sub)-paths. This property allows to efficiently reduce the search-

space without compromising the solution. �Dominance� can be regarded as a multidimensional

relaxation. The latter is a key fundament of single parameter shortest path algorithms (such as

Dijkstra and Bellman-Ford).

SAMCRA and TAMCRA have a worst-case complexity of

O(kN log(kN) + k2mE)

For TAMCRA the k is Þxed and hence the complexity is polynomial. However, for SAMCRA

this k can grow exponentially in the worst case. Knowledge about k is crucial to the complexity of

SAMCRA, because a large k could make the algorithm useless. As an upper-bound for k, we could

use kmax = be(N − 2)!c, which is an upper-bound on the total number of paths between a source and
destination in G(N,E) [80]. If the constraints/measures have a Þnite granularity, another upper-bound

applies:

13

kmax = min


mQ
i=1

Li

max
j
(Lj)

, be(N − 2)!c


where the constraints Li are expressed as an integer number of a basic unit.

SAMCRA guarantees to Þnd a path within the constraints, provided such a path exists. In

this process, SAMCRA only allocates queue-space when truly needed and self-adaptively adjusts the

number of stored paths k in each node. This explains the S in SAMCRA. In TAMCRA the allocated

queue-space is predeÞned via k. During the simulations with TAMCRA we chose k = 2, because this

small value for k already renders good results. Of course a better performance is achieved when k is

increased. Simulation results for different values for k can be found in [25].

3.1.4 Chen�s Approximate Algorithm

Chen and Nahrstedt [16], [17] provided an approximate algorithm for the MCP problem. This algo-

rithm Þrst transforms the MCP problem into a simpler problem by scaling down m − 1 (real) link
weights to integer weights as follows:

w∗i (u, v) =
»
wi(u, v) · xi

Li

¼
for i = 2, 3, . . . ,m,

where xi are predeÞned positive integers. The simpliÞed problem constitutes of Þnding a path P for

which w1(P) ≤ L1 and w∗i (P) ≤ xi, 2 ≤ i ≤ m. A solution to this simpliÞed problem is also a solution
to the original MCP problem, but not vice versa, because the conditions of the simpliÞed problem are

more strict. Since the simpliÞed problem can be solved exactly, Chen and Nahrstedt have shown that

the MCP problem can be solved exact in polynomial time, when at least m − 1 QoS measures have
bounded integer weights.

To solve the simpliÞed MCP problem, Chen and Nahrstedt proposed two algorithms based on

dynamic programming: the Extended Dijkstra�s Shortest Path algorithm (EDSP) and the Extended

Bellman-Ford algorithm (EBF). The algorithms return a path that minimizes the Þrst (real) weight

provided that the other m − 1 (integer) weights are within the constraints. The EBF algorithm is

expected to give the better performance in terms of execution time when the graph is sparse and the

number of nodes relatively large. We have chosen to implement the EBF version for our simulations.

The complexities of EDSP and EBF are O(x22 · · · x2mN2) and O(x2 · · · xmNE), respectively. To
achieve a good performance, high xi�s are needed, which makes this approach rather computationally

intensive for practical purposes. By adopting the concept of non-dominance, like in SAMCRA, this

algorithm could reduce its search-space, resulting in a faster execution time. (We have simulated all

algorithms in their original form, without any possible improvements)

3.1.5 Randomized Algorithm

Korkmaz and Krunz [48] have proposed a randomized heuristic for the MCP problem. The concept

behind randomization is to make random decisions during the execution of an algorithm [58, 62] so

that unforeseen traps can potentially be avoided when searching for a feasible path. The proposed

14

randomized algorithm is divided into two parts: the initialization phase and the randomized search.

In the initialization phase, the algorithm computes the shortest paths from every node u to the

destination node d w.r.t. each QoS measure and the linear combination of all m measures. Based

on the information obtained in the initialization phase, the algorithm can decide whether there is

a chance of Þnding a feasible path or not. If so, the algorithm starts from the source node s and

explores the graph using a randomized breadth-Þrst search (BFS). In contrast to conventional BFS,

which systematically discovers every node that is reachable from a source node s, the randomized

BFS discovers nodes from which there is a good chance to reach a destination node d. By using the

information obtained in the initialization phase, the randomized BFS can check whether this chance

exists before discovering a node. If there is no chance, the algorithm can foresee the trap and does not

explore such nodes further. The randomized BFS continues searching by randomly selecting discovered

nodes until the destination node is reached. If the randomized BFS fails in the Þrst attempt, it is

possible to execute only the randomized BFS again so that the probability of Þnding a feasible path

can be increased.

Under the same network conditions, multiple executions of the randomized algorithm may return

different paths between the same source and destination pair, providing some load-balancing. However,

some applications might require the same path again. In such cases, path caching can be used [67].

The worst-case complexity of the randomized algorithm is O(mN logN+mE). For the simulations

we only executed one iteration of the randomized BFS.

3.1.6 H_MCOP

Korkmaz and Krunz [49] also provided a heuristic called H_MCOP. This heuristic tries to Þnd a

path within the constraints by using the nonlinear path length function (3) of TAMCRA. In addi-

tion, H_MCOP tries to simultaneously minimize the weight of a single �cost� measure along the

path. To achieve both objectives simultaneously, H_MCOP executes two modiÞed versions of Di-

jkstra�s algorithm in backward and forward directions. In the backward direction, H_MCOP uses

the Reverse-Dijkstra algorithm for computing the shortest paths from every node to the destination

node d w.r.t. w(u, v) =
mP
i=1

wi(u,v)
Li

. This is the same as using Jaffe�s algorithm in reverse mode, where

di in (2) is equal to 1
Li
for i = 1, . . . ,m. Later on, these (reverse) paths from every node u to the

destination node d are used to estimate how suitable the remaining sub-paths are. In the forward

direction, H_MCOP uses a modiÞed version of Dijkstra�s algorithm called Look_Ahead_Dijkstra.

Look_Ahead_Dijkstra starts from the source node s and discovers each node u based on a path P ,

where P is a heuristically determined complete s-d path that is obtained by concatenating the already

traveled sub-path from s to u and the estimated remaining sub-path from u to d. Since H_MCOP

considers complete paths before reaching the destination, it can foresee several infeasible paths during

the search. If paths seem feasible, then the algorithm can switch to explore these feasible paths based

on the minimization of the single measure.

The complexity of the H_MCOP algorithm is O(N logN +mE). If one deals only with the MCP

problem, then H_MCOP should be stopped whenever a feasible path is found during the search in

the backward direction, reducing the computational complexity. In the simulations, we use H_MCOP

with the objective of minimizing the weight of a single measure. The performance of H_MCOP in

15

Þnding feasible paths can be improved by using the k-shortest path algorithm and by eliminating

dominated paths [50].

3.1.7 Limited Path Heuristic

Yuan and Liu [86, 87] presented two heuristics for the MCP problem. The Þrst �limited granularity�

heuristic has a complexity of O(NmE), whereas the second �limited path� heuristic (LPH) has a

complexity of O(k2NE), where k corresponds to the queue-size at each node. The authors claim that

when k = O(N2 log2N), the limited path heuristic has a very high probability of Þnding a feasible

path, provided that such a path exists. However, applying this value results in an excessive execution

time.

The performance of both algorithms is comparable when m ≤ 3, but for m > 3 the limited path

heuristic is better than the limited granularity heuristic. Hence, we will only evaluate the limited

path heuristic. Another reason for omitting an evaluation of the limited granularity heuristic is that

it closely resembles the algorithm from Chen and Nahrstedt (Section 3.1.4).

The limited path heuristic is an extended Bellman-Ford algorithm that uses two of the fundamental

concepts of TAMCRA. Both use the concept of non-dominance and maintain at most k paths per node.

However, TAMCRA uses a k-shortest path approach, while LPH stores the Þrst (and not necessarily
shortest) k paths. Furthermore LPH does not check whether a sub-path obeys the constraints, it only

does this at the end for the destination node. An obvious difference is that LPH uses a Bellman-Ford

approach, while TAMCRA uses a Dijkstra-like search. The simulations revealed that Bellman-Ford-

like implementations require more execution time than Dijkstra-like implementations, especially when

the graphs are dense.

Conform the queue-size allocated for TAMCRA, we also allocated k = 2 in the simulations for

LPH.

3.1.8 A*Prune

Liu and Ramakrishnan [56] considered the problem of Þnding not only one but multiple (K) shortest

paths satisfying the constraints. The length function used is the same as Jaffe�s length function (2).

Liu and Ramakrishnan proposed an exact algorithm called A*Prune. If there are no K feasible paths

present, the algorithm will only return those that are within the constraints. For the simulations we

took K = 1.

A*Prune Þrst calculates for each QoS measure the shortest paths from the source s to all i ∈ N\{s}
and from the destination d to all i ∈ N\{d}. The weights of these paths will be used to evaluate
whether a certain sub-path can indeed become a feasible path (similar look ahead features were also

deployed by Korkmaz and Krunz [48], [49]). After this initialization phase the algorithm proceeds in

a Dijkstra-like fashion. The node with the shortest predicted end-to-end length3 is extracted from a

heap and then all of its neighbors are examined. The neighbors that cause a loop or lead to a violation

of the constraints are pruned. The A*Prune algorithm continues extracting/pruning nodes until K

constrained shortest paths from s to d are found or until the heap is empty.

3The length function is a linear function of all measures (2). If there are multiple sub-paths with equal predicted

end-to-end length, the one with the shortest length so-far is chosen.

16

If Q is the number of stored paths, then the worst-case complexity is O(QN(m+h+logQ)), where

h is the number of hops of the retrieved path. This complexity is exponential, because Q can grow

exponentially with G(N, E). Liu and Ramakrishnan [56] do mention that it is possible to implement

a Bounded A*Prune algorithm, which runs polynomial in time at the risk of loosing exactness.

3.2 Performance Comparison of MCP Algorithms

In this section we will present and discuss the simulations results for the MCP problem. The sim-

ulations consist of creating a Waxman topology [83], [80], through which the evaluated algorithms

compute a path based on a set of constraints. After storing the desired results, this procedure is

repeated. All simulations consisted of generating 104 topologies. The weights of a link were assigned

independent uniformly distributed random variables in the range [0, 1].

The choice of the constraints is important, because it determines how many (if any) feasible paths

exist. We adopt two sets of constraints, referred to as L1 and L2:

� L1 : Li = wi(P), i = 1, ...,m, where P is the shortest path according to (3)

� L2 : Li = max
j=1,...,m

(wi(SPj)), i = 1, ...,m, where SPj is the shortest path based on the j-th

measure.

The Þrst set of constraints, denoted by L1, is very strict, such that there is only one feasible path

present in the graph. The second set of constraints (L2) is based on the weights of the shortest paths

for each QoS measure. We use Dijkstra to compute these shortest paths and for each of these m paths

we store their path weight vectors. We then choose for each measure i the maximum i-th component

of these m path weight vectors. (Iwata�s algorithm can always Þnd a feasible path with this set of

constraints)

During all simulations we stored the success rate (SR) and the normalized execution time (NET).

They are deÞned as follows:

SR =
returned feasible paths
examined graphs

NET =
CPU time algorithm
CPU time Dijkstra

Our simulations revealed that the Bellman-Ford-like algorithms (Chen�s algorithm and the Limited

Path Heuristic) consume signiÞcantly more execution time than their Dijkstra-like counterparts. We

therefore omitted them from the results presented in this paper.

Figure 6 gives the success rate for four different topology sizes (N = 50, 100, 200 and 400), with

m = 2. The exact algorithms SAMCRA and A*Prune always give the highest success rate possible.

The difference in the success rate of the heuristics is especially noticeable when the constraints are

strict. In this case Jaffe�s algorithm and Iwata�s algorithm perform signiÞcantly worse than the

others. The only heuristic that is not affected much by strict constraints is the randomized algorithm.

However, its execution time is comparable to that of the exact algorithms.

17

N

100 200 300 400

Su
cc

es
s

ra
te

0.5

0.6

0.9

1.0

SAMCRA
Jaffe
Iwata
Rand
H_MCOP
A*Prune
TAMCRA

N

100 200 300 400

Su
cc

es
s

ra
te

0.988

0.990

0.992

0.994

0.996

0.998

1.000

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

Figure 6: The success rate for m = 2. The results for the set of constraints L1 is depicted on the left

and for L2 on the right.

Figure 7 displays the normalized execution time. It is interesting to observe that the execution

time of the exact algorithm SAMCRA, does not deviate much from the polynomial time heuristics.

This difference increases with the number of nodes, but an exponential growing difference is not

noticeable! A Þrst step towards understanding this phenomenon was provided by Kuipers and Van

Mieghem in [52]. Furthermore, it is noticeable that when the constraints get looser, the execution time

increases. The algorithms to which this applies, all try to minimize some length function (MCOP).

When constraints get loose, this means that there will be more paths within the constraints, among

which the shortest path has to be found. Searching through this larger set results in an increased

execution time. If optimization is not strived for (MCP), then it is easier to Þnd a feasible path if the

constraints are loose, then when they are strict.

N

0 100 200 300 400 500

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1

2

3

4

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

N

0 100 200 300 400 500

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1

10

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

Figure 7: The normalized execution times for m = 2. The results for the set of constraints L1 are

plotted on the left and for L2 on the right.

We have also simulated the performance of the algorithms as a function of m (m = 2, 4, 8 and 16).

The results are plotted in Figures 8 and 9. We can see that the algorithms display a similar ranking in

18

success rate as in Figure 6. All link weights are independent uniformly distributed random variables.

Under independent link weights, the larger m, the larger the set of non-dominated paths to evaluate.

However, at a certain threshold point (m), the constraint values will become dominant, leading to an

increasing number of paths that violate the constraints and hence less paths to evaluate. This property

is explained in [79]. The impact of the constraint values can also be seen by comparing the execution

times in Figures 8 and 9. If the constraints are loose, then a signiÞcant difference in execution time

is noticeable between the exact algorithms SAMCRA and A*Prune. This can be attributed to the

look ahead property of A*Prune, which can foresee whether sub-paths can lead to feasible end-to-end

paths. Again, note that we do not see any NP-complete behavior in the execution times.

m

0 2 4 6 8 10 12 14 16 18

Su
cc

es
s

ra
te

0.0

0.2

0.4

0.6

0.8

1.0

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

m

0 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0

2

4

6

8

10

12

14

16

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

Figure 8: The success rate and normalized execution time in a 100-node network, as a function of m,

with the set of constraints L1.

m

0 2 4 6 8 10 12 14 16 18

Su
cc

es
s

ra
te

0.975

0.980

0.985

0.990

0.995

1.000

1.005

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

m

0 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1

10

100

SAMCRA
Jaffe
Iwata
H_MCOP
Rand
A*Prune
TAMCRA

Figure 9: The success rate and normalized execution time in a 100-node network, as a function of m,

with the set of constraints L2.

Based on these results we can rank the heuristics according their success rate and execution time

as follows: TAMCRA, H_MCOP, Randomized algorithm, Jaffe�s algorithm, Iwata�s algorithm.

19

Finally we have evaluated the optimal decision rate (ODR), which is deÞned as follows:

ODR =
returned feasible paths with shortest length

feasible paths with shortest length

We have evaluated the optimal decision rate of the best heuristics TAMCRA (vs. SAMCRA) and

H_MCOP (vs. SAMCRAcost). The exact algorithms SAMCRA and SAMCRAcost always have an

optimal decision rate of 1.0. Figure 10 displays the optimal decision rate of TAMCRA with the length

function (3) and the constraints set L2. Because the constraints set L1 allows only for one feasible

path, the success rate (in Figure 6) for this set equals the optimal decision rate.

N

40 60 80 100 120 140 160 180 200 220

O
pt

im
al

 d
ec

is
io

n
ra

te

0.958

0.960

0.962

0.964

0.966

0.968

0.970

0.972

0.974

0.976

0.978

ODR TAMCRA

Figure 10: The optimal decision rate of TAMCRA with k = 2, for m = 2.

In roughly 95% of the cases TAMCRA Þnds the shortest path. The optimal decision rate decreases

slightly with increasingN . The optimal decision rate for H_MCOP is plotted in Figure 11. The length

function used here is fully determined by a single unconstrained �cost� measure, e.g., monetary cost.

N

40 60 80 100 120 140 160 180 200 220

O
pt

im
al

 d
ec

is
io

n
ra

te

0.91

0.92

0.93

0.94

0.95

0.96

ODR H_MCOP

Figure 11: The optimal decision rate of H_MCOP for m = 2.

The ability of H_MCOP to Þnd the shortest path decreases somewhat faster as compared to

20

TAMCRA in Figure 10. Two reasons can be given: (1) The success rate of H_MCOP is smaller than

that of TAMCRA. (2) H_MCOP uses an extra �cost� measure.

3.3 MCP Conclusions

We will present conclusions for the considered class of graphs, namely the Waxman graphs (and

according to [80] also random graphs) with independent uniformly distributed link weights.

For the MCP problem, we observe that TAMCRA-like algorithms have a higher success rate than

linear approximations and Bellman-Ford based algorithms. This higher success rate is attributed to

the following features of TAMCRA-like algorithms:

1. Using a Dijkstra-like search along with a nonlinear length function

A nonlinear length function is a prerequisite for exactness. When the link weights are positively

correlated, a linear approach may give a high success rate in Þnding feasible paths, but under

different circumstances the returned path may violate the constraints by 100%.

A Bellman-Ford-like search runs better on sparse graphs, however our simulations indicated

that even on sparse graphs (link-density ≈ 0.2), the Dijkstra-like heap-optimized search runs

signiÞcantly faster.

2. Reducing the search-space through the concept of non-dominance

Reducing the search-space is always desirable, because this reduces the execution time of an algo-

rithm. The non-dominance principle is a very strong search-space reducing technique, especially

when the number of constraints is small.

3. Tunable accuracy through a k-shortest path functionality

Routing with multiple constraints may require that multiple paths be stored at a node, leading

to a k-shortest path approach.

4. Predicting the feasibility of paths (look ahead property)

First calculating a path in polynomial time between the source and destination and using this

information to Þnd a feasible path between the same source and destination is especially useful

when graphs become �hard to solve�, i.e. N,E and m are large.

The exactness of the TAMCRA-like algorithms depends on the liberty of k. If k is not restricted,

then both MCP and MCOP problems can be solved exact, as done by SAMCRA. Although k is

not restricted in SAMCRA, simulations on Waxman graphs with independent uniformly distributed

random link weights show that the execution time of this exact algorithm increases linearly with the

number of nodes, providing a scalable solution to the MC(O)P problem. If a slightly larger execution

time is permitted, then such exact algorithms are a good option. Furthermore, simulation results show

that TAMCRA-like algorithms with small values of k render near-exact solutions with a Dijkstra-like

(polynomial) complexity. For example, TAMCRA with k = 2 has almost the same success rate as the

exact algorithms.

21

4 QoS Routing Algorithms for Special Cases

Several works in the literature have aimed at addressing special yet important sub-problems in QoS

routing. For example, researchers addressed QoS routing in the context of bandwidth and delay.

Routing with these two measures is not NP-complete. Wang and Crowcroft [82] presented a bandwidth-

delay based routing algorithm which simply prunes all links that do not satisfy the bandwidth constraint

and then Þnds the shortest path w.r.t. the delay in the pruned graph. Several path selection algorithms

based on different combinations of bandwidth, delay, and hopcount were discussed in [59, 60, 64]

(e.g., widest-shortest path and shortest-widest path). In addition, new algorithms were proposed

to Þnd more than one feasible path w.r.t. bandwidth and delay (e.g., Maximally Disjoint Shortest

and Widest Paths) [77]. Kodialam and Lakshman [46] proposed bandwidth guaranteed dynamic

routing algorithms. Orda and Sprintson [65] considered pre-computation of paths with minimum

hopcount and bandwidth guarantees. They also provided some approximation algorithms that take

into account certain constraints during the pre-computation. Guerin and Orda [33] focussed on the

impact of reserving in advance on the path selection process. They describe possible extensions to

path selection algorithms in order to make them advance-reservation aware, and evaluate the added

complexity introduced by these extensions. Fortz and Thorup [28] investigated how to set link weights

based on previous measurements so that the shortest paths can provide better load balancing and can

meet the desired QoS constraints. When there exist certain speciÞc dependencies between the QoS

measures, due to speciÞc scheduling schemes at network routers, the path selection problem is also

simpliÞed [59, 69]. SpeciÞcally, if Weighted Fair Queueing scheduling [31, 75] is being used and the

constraints are on bandwidth, queueing delay, jitter, and loss, then the problem can be reduced to a

standard shortest path problem by representing all the constraints in terms of bandwidth. However,

care must be taken, because although queueing delay can be formulated as a function of bandwidth,

this is not the case for the propagation delay, which cannot be ignored in high-speed networks.

5 Summary and Discussion

The state of the network in terms of Quality of Service (QoS) measures, e.g., available bandwidth and

delay, is often volatile, making it hard to provide each node in the network with a consistent, accurate

view of the network. For instance, consider ad hoc networks [66], where besides the dynamic behavior

of the link weights also the nodes move around. It is therefore important to Þnd a suitable QoS

protocol that keeps the nodes� view of the state of the network up to date. There are some attempts

towards such a protocol (e.g., in [5]), but still much work needs to be done. For instance how and

when to distribute the link-state information without overloading the network, but at the same time

to keep every node up to date, is still an unsolved problem. Furthermore, these QoS protocols operate

within an AS (a single domain) and inter-AS protocols like BGP are currently not able to provide QoS

information between ASs. Efficiently providing end-to-end QoS is therefore still an utopia and will

require a coherent cooperation of a set of networking tools, like a good link-state update policy, traffic

management (resource reservation, packet classiÞcation, queue management, scheduling, admission

control, policy control, bandwidth broker, ...) and hierarchical structuring of the topology.

Once a suitable QoS routing protocol has been found and each node in the network has an up

22

to date view of the network a second challenging task in QoS routing appears, namely (based on

this information) to Þnd a path subject to multiple constraints. In other words, we need a suitable

QoS routing algorithm. Several researchers investigated this constraint-based path selection problem

and proposed various algorithms, mostly heuristics. This paper, divided into two parts, describes

these algorithms as proposed for the restricted shortest path and multi-constrained (optimal) path

problems, and evaluates their performance through simulations in the class of Waxman graphs with

independent uniformly distributed random link weights. Table 1 displays the complexities of the

algorithms discussed in this paper.

Algorithm Worst-case complexity

Pseudo-polynomial-RSP O(∆E)

²-approximate from Hassin O((EN² + 1) log(logB)), O(EN
2

² log(N²))

²-approximate from Philips O(EN(1 + 1/²) + N2(1 + 1/²)(logN + log(1 +

1/²)))

²-approximate from Goel et al. O(D² (E +N logN))

DCUR O(N)

BFH O(N logN +E)

Lagrangian algorithm O(E2 log2(E))

SSR+DCCR O(xE logN + kE log(kN) + k2E)

Jaffe�s algorithm O(N logN +mE)

Iwata�s algorithm O(mN logN +mE)

SAMCRA, TAMCRA O(kN log(kN) + k2mE)

EDSP, EBF O(x22 · · · x2mN2), O(x2 · · · xmNE)
Randomized algorithm O(mN logN +mE)

H_MCOP O(N logN +mE)

LPH O(k2NE)

A*Prune O(QN(m+N + log h))

Table 1: Worst-case complexities of QoS routing algorithms.

The simulation results show that the worst-case complexities of Table 1 should be interpreted with

care. For instance, the real execution time of H_MCOP will always be longer than that of Jaffe�s

algorithm under the same conditions. In general, the simulation results indicate that TAMCRA-

like algorithms that use a k-shortest path algorithm along with a nonlinear length function while

eliminating dominated paths and possibly applying other search-space reducing techniques, give the

better performance for considered problems. The performance and complexity of these algorithms is

easily adjusted by controlling the value of k. When k is not restricted, the TAMCRA-like algorithms

lead to exact solutions. In the class of Waxman or random graphs with uniformly distributed link

weights, simulation results suggest that the execution times of such exact algorithms increase almost

linearly with the number of nodes in G(N,E), contrary to the expected exponential increase.

23

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall,

Inc., 1993.

[2] L.H. Andrew and A.A.N. Kusuma, Generalized Analysis of a QoS-aware routing algorithm, IEEE GLOBECOM

1998, Piscataway, NJ, USA, vol. 1, pp. 1-6, 1998.

[3] Y.P. Aneja and K.P.K. Nair, The constrained shortest path problem, Naval Research Logistics Quarterly, 25:549�555,

1978.

[4] G. Apostolopoulos, R. Guerin, S. Kamat and S.K. Tripathi, Quality of Service Based Routing: A performance

perspective, Proceedings of the ACM SIGCOMM �98 Conference, Vancouver, British Columbia, Canada, pp. 17-28,

August/September, 1998.

[5] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda and T. Przygienda, QoS Routing Mechanisms and

OSPF Extensions, RFC 2676, August 1999.

[6] The ATM Forum, Private Network-to-Network Interface SpeciÞcation Version 1.0 (PNNI 1.0), af-pnni-0055.000,

March 1996.

[7] D. Awduche, J. Malcolm, J. Agogbua, M. O�Dell and J. McManus, Requirements for Traffic Engineering over

MPLS, RFC 2702, September 1999.

[8] A. Banerjee, J. Drake, J.P. Lang, B. Turner, K. Kompella and Y. Rekhter, Generalized Multiprotocol Label Switch-

ing: An Overview of Routing and Management Enhancements, IEEE Communications Magazine, vol. 39, issue 1,

pp. 144-150, January 2001.

[9] E. Basturk and P. Stirpe, A Hybrid Spanning Tree Algorithm For Efficient Topology Distribution in PNNI, Pro-

ceedings of the 1st IEEE International Conference on ATM (ICATM �98), pp. 385-394, 1998.

[10] B. Bellur and R.G. Ogier, A reliable, efficient topology broadcast protocol for dynamic networks, Proceedings of the

INFOCOM�99 Conference, pp. 178-186, 1999.

[11] D. Bertsekas, Data networks, Prentice Hall, Inc., 1992.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, An Architecture for Differentiated Services,

RFC 2475, December 1998.

[13] D. Blokh and G. Gutin, An approximate algorithm for combinatorial optimization problems with two parameters,

Australasian Journal of Combinatorics, 14:157�164, 1996.

[14] R. Braden, D. Clark and S. Shenker, Integrated Services in the Internet Architecture: an Overview, RFC 1633,

June 1994.

[15] B. Cain, Fast link state ßooding, Global Telecommunications Conference, IEEE GLOBECOM�00, vol. 1, pp. 465-

469, 2000.

[16] S. Chen and K. Nahrstedt, On Þnding multi-constrained paths, proceedings of ICC �98, IEEE, New York, pp.

874-879, 1998.

24

[17] S. Chen and K. Nahrstedt, On Finding Multi-constrained Paths, Technical Report UIUCDCS-R-97-2026, Dept. of

Computer Science, University of Illinois, Urbana-Champaign, August, 1997.

[18] S. Chen and K. Nahrstedt, An Overview of Quality of Service Routing for Next-Generation High-Speed Networks:

Problems and Solutions, IEEE Network, November/December 1998.

[19] T.M. Chen and T.H. Oh, Reliable Services in MPLS, IEEE Communication Magazine, vol. 37, no. 12, pp. 58-62,

Dec. 1999.

[20] E.I. Chong, S. Maddila, S. Morley, On Finding Single-Source Single-Destination k Shortest Paths, J. Computing

and Information, 1995, special issue ICCI�95, pp. 40-47.

[21] R. Coltun, The OSPF Opaque LSA Option, RFC 2370, July 1998.

[22] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, 2000.

[23] E. Crawley, R. Nair, B. Rajagopalan and H. Sandick, A Framework for QoS-based Routing in the Internet, RFC

2386, August 1998.

[24] H. De Neve and P. Van Mieghem, A multiple quality of service routing algorithm for PNNI, IEEE ATM workshop,

Fairfax, May 26-29, 1998, pp. 324-328.

[25] H. De Neve and P. Van Mieghem, TAMCRA: A Tunable Accuracy Multiple Constraints Routing Algorithm, Com-

puter Communications, 2000, vol. 23, pp. 667-679.

[26] D. Eppstein, Finding the k Shortest Paths, SIAM J. Computing, 28(2):652-673,1998.

[27] F. Ergun, R. Sinha and L. Zhang, QoS routing with performance-dependent costs, Proceedings of INFOCOM 2000,

vol. 1, pp. 137-146, 2000.

[28] B. Fortz and M. Thorup, Internet traffic engineering by optimizing OSPF weights, Proceedings of INFOCOM 2000,

vol. 2, pp. 519-528, 2000.

[29] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman,

San Francisco, 1979.

[30] A. Goel, K.G. Ramakrishnan, D. Kataria and D. Logothetis, Efficient computation of delay-sensitive routes from

one source to all destinations, in Proceedings of the INFOCOM 2001 Conference, volume 2, pages 854�858. IEEE,

April 2001.

[31] S.J. Golestani, A self-clocked fair queueing scheme for broadband applications, Proceedings of INFOCOM�94, vol.

2, pp. 636-646, 1994.

[32] G.H. Golub and C.F. Van Loan, Matrix Computations, 1st ed., North Oxford Academic, Oxford, 1983.

[33] R. Guerin and A. Orda, Networks with advance reservations: The routing perspective, Proceedings of INFOCOM

2000, Israel, March 26-30, 2000.

[34] R. Guerin and V. Peris, Quality-of-Service in Packet Networks: Basic Mechanisms and Directions, Computer

Networks, vol. 31, no. 3, pp. 169-179, Feb. 1999.

25

[35] L. Guo and I. Matta, Search space reduction in QoS routing, Proc. of the 19th III Int. Conference on Distributed

Computing Systems, III, May 1999, pp. 142-149.

[36] G.Y. Handler and I. Zang, A dual algorithm for the constrained shortest path problem, Networks, 10:293�310, 1980.

[37] R. Hassin, Approximation schemes for the restricted shortest path problem, Mathematics of Operations Research,

17(1):36�42, 1992.

[38] M.I. Henig, The shortest path problem with two objective functions, European J. of Operational Research, 1985,

vol. 25, pp. 281-291.

[39] C. Huitema, Routing in the Internet, Prentice Hall, Inc., 1995.

[40] P.A. Humblet and S.R. Soloway, Topology Broadcast Algorithms, Computer Networks and ISDN Systems, vol. 16,

pp. 179-186, 1988/89

[41] K. Ishida, K. Amano and N. Kannari, A delay-constrained least-cost path routing protocol and the synthesis method,

in Proceedings of the Fifth International Conference on Real-Time Computing Systems and Applications, pages 58

� 65. IEEE, Oct. 1998.

[42] A. Iwata, R. Izmailov, D.-S. Lee, B. Sengupta, G. Ramamurthy and H. Suzuki, ATM Routing Algorithms with

Multiple QoS Requirements for Multimedia Internetworking, IEICE Transactions and Communications E79-B, no.

8, pp. 999-1006, 1996.

[43] J.M. Jaffe, Algorithms for Þnding paths with multiple constraints, Networks 14, pp. 95-116, 1984.

[44] A. Juttner, B. Szviatovszki, I. Mecs and Z. Rajko, Lagrange relaxation based method for the QoS routing problem,

in Proceedings of the INFOCOM 2001 Conference, volume 2, pages 859�868. IEEE, April 2001.

[45] P.N. Klein and N.E. Young, Approximation Algorithms for NP-Hard Optimization Problems, in Algorithms and

Theory of Computation Handbook, ed. M.J. Atallah, CRC Press, ch. 34, pp. 34.1-34.19, 1999.

[46] M. Kodialam and T.V. Lakshman, Dynamic routing of bandwidth guaranteed tunnels with restoration, Proceedings

of INFOCOM 2000, pp. 902-911, 2000.

[47] T. Korkmaz, M. Krunz and S. Tragoudas, An Efficient Algorithm for Finding a Path Subject to Two Additive

Constraints, Proceedings of the ACM SIGMETRICS �00 Conference, Santa Clara, CA, vol. 1, pp. 318-327, June,

2000.

[48] T. Korkmaz and M. Krunz, A randomized algorithm for Þnding a path subject to multiple QoS requirements,

Computer Networks, vol. 36, pp. 251-268, 2001.

[49] T. Korkmaz and M. Krunz, Multi-Constrained Optimal Path Selection, IEEE INFOCOM 2001.

[50] T. Korkmaz, QoS Routing in Packet Networks, The University of Arizona, 2001.

[51] H.W. Kuhn and A.W. Tucker, Nonlinear Programming, Proc. 2nd Berkeley Symposium on Mathematical Statistics

and Probability, pp. 481-492, Berkeley, CA, 1961.

26

[52] F.A. Kuipers and P. Van Mieghem, QoS routing: Average Complexity and Hopcount in m Dimensions, Proc. of

Second COST 263 International Workshop, QofIS 2001, Coimbra, Portugal, pp. 110-126, September 24-26, 2001.

[53] F.A. Kuipers and P. Van Mieghem, MAMCRA: A Constrained-Based Multicast Routing Algorithm, Computer

Communications, vol. 25/8, pp. 801-810, May 2002.

[54] W.C. Lee, M.G. Hluchyi and P.A. Humblet, Routing Subject to Quality of Service Constraints in Integrated Com-

munication Networks, IEEE Network, pp. 46-55, July/August, 1995.

[55] B. Lekovic and P. Van Mieghem, Link State Update Policies for Quality of Service Routing, IEEE Eighth Symposium

on Communications and Vehicular Technology in the Benelux (SCVT2001), Delft, The Netherlands, pp. 123-128,

October 18 2001.

[56] G. Liu and K.G. Ramakrishnan, A*Prune: An Algorithm for Finding K Shortest Paths Subject to Multiple Con-

straints, IEEE INFOCOM 2001.

[57] D.H. Lorenz, A. Orda, D. Raz and Y. Shavitt, Efficient QoS Partition and Routing of Unicast and Multicast,

Proceedings of IWQoS 2000, pp. 75-83, June, 2000.

[58] L. Lovasz, Randomized Algorithms in Combinatorial Optimization, in Combinatorial Optimization (Series in Dis-

crete Mathematics and Theoretical Computer Science), eds. W. Cook, L. Lovasz and P. Seymour, vol. 20, pp.

153-179, American Mathematical Society, 1995.

[59] Q. Ma and P. Steenkiste, On Path Selection for Traffic with Bandwidth Guarantees, Proceedings of the IEEE

International Conference on Network Protocols (ICNP �97), Atlanta, Georgia, pp. 191-202, October, 1997.

[60] Q. Ma and P. Steenkiste, Routing Traffic with Quality-of-ServiceGuarantees in Integrated Services Networks, Pro-

ceedings of NOSSDAV�98, July 1998.

[61] D.E. McDysan, QoS & traffic management in IP & ATM networks, McGraw-Hill, 2000.

[62] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.

[63] J. Moy, OSPF Version 2, RFC 2328, April 1998.

[64] A. Orda, Routing with End-to-End QoS Guarantees in Broadband Networks, IEEE/ACM Transactions on Network-

ing, vol. 7, no. 3, pp. 365-374, 1999.

[65] A. Orda and A. Sprintson, QoS routing: the precomputation perspective, Proceedings of INFOCOM 2000, pp.

128-136, 2000.

[66] C.E. Perkins (ed.), Ad Hoc Networking, Addison-Wesley, 2001, ISBN: 0-201-30976-9.

[67] M. Peyravian and A.D. Kshemkalyani, Network path caching: Issues, algorithms and a simulation study, Perfor-

mance Evaluation, vol. 20, no. 8, pp. 605-614, 1997.

[68] C.A. Phillips, The network inhibition problem, in Proceedings of the 25th Annual ACM Symposium on the Theory

of Computing (STOC), pages 776�785, May 1993.

27

[69] C. Pornavalai, G. Chakraborty and N. Shiratori, QoS Based Routing Algorithm in Integrated Services Packet

Networks, Proceedings of IEEE ICNP�97, pp. 167-174, 1997.

[70] D.S. Reeves and H. F. Salama, A distributed algorithm for delay-constrained unicast routing, IEEE/ACM Transac-

tions on Networking, 8(2):239�250, April 2000.

[71] E. Rosen, A. Viswanathan and R. Callon, Multiprotocol Label Switching Architecture, RFC 3031, January 2001.

[72] H.F. Salama, D.S. Reeves and Y. Viniotis, Evaluation of Multicast Routing Algorithms for Real-Time Communi-

cation on High-Speed Networks, IEEE JSAC, 15(3), pp. 332-345, April 1997.

[73] R. Sriram, G. Manimaran, and C. S. R. Murthy, Preferred link based delay-constrained least-cost routing in wide

area networks, Computer Communications, 21:1655�1669, 1998.

[74] M. Steenstrup, Routing in Communications Networks, Prentice Hall, Inc., 1995.

[75] I. Stoica and H. Zhang, Core-stateless fair queueing: achieving approximately fair bandwidth allocations in high

speed networks, Proceedings of the ACM SIGCOMM �99 conference on Applications, technologies, architectures,

and protocols for computer communication, pp. 81-94, 1999.

[76] Q. Sun and H. Langendorfer, A new distributed routing algorithm for supporting delay-sensitive applications, Com-

puter Communications, 21:572�578, 1998.

[77] N. Taft-Plotkin, B. Bellur and R. Ogier, Quality-of-Service routing using maximally disjoint paths, The Seventh

International Workshop on Quality of Service (IWQoS�99), London, England, pp. 119-128, May/June, 1999.

[78] M. van der Zee, Quality of Service Routing - State of the Art Report, Ericsson, 1/0362-FCP NB 102 88 Uen,

http://searchpdf.adobe.com/proxies/0/9/25/62.html, 1999.

[79] P. Van Mieghem, H. De Neve and F.A. Kuipers, Hop-by-Hop Quality of Service Routing, Computer Networks, vol.

37/3-4, pp. 407-423, October 2001.

[80] P. Van Mieghem, Paths in the simple Random Graph and the Waxman Graph, Probability in the Engineering and

Informational Sciences (PEIS), vol. 15, pp. 535-555, 2001.

[81] B. Wang and J.C. Hou,Multicast routing and its QoS extension: problems, algorithms, and protocols, IEEE Network,

vol. 14, no. 1, pp. 22-36, Jan.-Feb 2000.

[82] Z. Wang and J. Crowcroft, Quality-of-Service Routing for Supporting Multimedia Applications, IEEE JSAC, vol.

14, no. 7, pp. 1228-1234, September, 1996.

[83] B.M. Waxman, Routing of multipoint connections, IEEE JSAC, 6(9):1617-1622, december 1998.

[84] R. Widyono, The design and evaluation of routing algorithms for real-time channels, Technical Report TR-94-024,

University of California at Berkeley & International Computer Science Institute, June 1994.

[85] X. Xiao and L.M. Ni, Internet QoS: A big picture, IEEE Network, vol. 13, no. 2, pp. 8-18, March-April 1999.

[86] X. Yuan and X. Liu, Heuristic Algorithms for Multi-Constrained Quality of Service Routing, IEEE INFOCOM

2001.

28

[87] X. Yuan, Heuristic Algorithms for Multiconstrained Quality-of-Service Routing, IEEE/ACM Transactions on Net-

working, vol. 10, no. 2, April 2002.

29

